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Abstract 

This study aims to verify empirically the accuracy of parametric and non-parametric 

approaches in estimating Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) 

measures of the Brazilian stock market index (Ibovespa). The period of analysis goes 

from the first day of trade of 1995 to the last day of trade of 2004, which is used for 

estimation and test of the risk parameters. Parametric approaches assume that daily 

returns follow a normal and at-distribution. Non-parametric approaches are the historical 

simulation and the volatility-weighted historical simulation technique. The binomial test 

is applied to verify if the failure rates predicted by VaR measures given by the models are 

acceptable and the sample differences paired test is used to evaluate the accuracy of the 

CVaR measures in forecasting tail losses. The results point out that the volatility­

weighted historical simulation approach gives better estimates of both measures of risk. 

The rates of losses exceeding volatility-weighted historical simulation VaRs (VWHS­

VaRs) ranged between 4.7-6.0%, at the 95% cl, and between 0.9-1.2%, at the 99% cl. For 

all periods of estimation used (1, 2, 3, 4, and 5 years), at the 95% cl, the sample 

differences paired test indicated no statistically significant differences between the 

VWHS-CVaR estimates and the losses beyond its VaR estimates. Risk lines for the 

normal and historical simulation VaR (HS-V aR) estimates presented flatness, or 

excessive smoothness, for large periods of estimation, and the student t VaR (T-VaR) 

estimates were sometimes too low or too high. For these models, short periods of 

estimation gave more accurate VaR estimates. For the CVaR estimates, the normal and t­

distribution assumptions caused overestimation of the value of the tail losses. Finally, the 

HS-CVaR had similar performance of HS-VaR providing, at the 95% cl, good estimates 

of tail losses when short periods of estimation were used. 
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1. Introduction 

The interest on the issue of risk management has considerably increased in the past 

decades. Volatile economic environment, growth in trading activity, and advances in 

information technology are among the factors that contributed to increase the interest and 

development of risk management tools. 1 

Markowitz (1952) was the first to explicitly include risk analysis in a portfolio selection 

setting. 2 The risk, in this case, was measured in terms of variances and covariances between 

securities. Basically, Markowitz proposed a combination of statistical analyses to estimate 

means, variances, and covariances of securities that, when included in a portfolio, define the 

relation between risk and return. The author called the optimal combinations of securities, 

which lead to the maximum return possible for each given risk level, as the set of mean­

variance efficient combinations. 

Based on the portfolio theory developed by Markowitz, some economic models of asset 

pricing also used risk analysis to determine differences in asset returns. Essentially, these 

models seek to quantify risk through risk measures and then convert a random future gain or 

loss into a certainty equivalent. 

The first well-known economic model of asset pricing is the CAPM (Capital Asset 

Pricing Model). Presented by Sharpe (1964), Lintner (1965), and Mossin (1966), this model 

suggests that the market beta is the only factor defining expected returns. In simple terms, the 

market beta expresses the sensitivity of an asset relative to the market. Statistically, it is 

defined as the covariance between an asset returns and the market returns divided by the 

variance of the market returns. 

1 Dowd (2002, Ch. 1) 
2 "Markowitz proposed to measure the risk associated to the return of each investment by means of the 
deviation from the mean of the return distribution, the variance, and in the case of a combination (portfolio) of 
assets, to gauge the risk level via the covariance between all pairs of investments" (Szego, 2002). 



www.manaraa.com

2 

Later, seeking to overcome the weaknesses and limitations of the CAPM evidenced by 

other studies (Black (1972) and Merton (1973)), Ross (1976) developed an alternative model 

denominated Arbitrage Pricing Theory (APT). The idea behind this model was to construct a 

multiple factor model incorporating alternative sources of risk in an economy not included in 

the CAPM. Its basic assumption is that two portfolios with the same risk level should not 

have different expected returns. On the contrary, the arbitrage process would promptly 

eliminate the difference. The model assumes that the sensitivity of an asset price to some 

factors determine the risk premium. Expected returns and factors (betas) are linearly related. 

The theory does not specify which factors should be used in the model, but suggests that they 

are macroeconomic factors responsible for the systematic risk, the risk that cannot be 

eliminated through the diversification process. 

In summary, the main economic asset pricing models (CAPM and APT) use exogenous 

information to explain expected returns. Variables such as market risk, industrial production, 

changes in the risk premium, twists in the yield curve, measures of unanticipated inflation 

and changes in expected inflation are found to influence on pricing (Chen, Roll, and Ross 

(1986)). The risk of an asset is, therefore, estimated and the individual expected return is 

specified. On this kind of approach, the relative risk is the determinant factor of the 

differential asset returns. 

The importance of Markowitz's work for risk management in firms and banks is also 

notorious. Essentially, his study raised a new issue that had never been addressed before. 

After his work, researches and financial institutions have been seeking to develop risk 

measurement tools to deal with the exposure to adversity. Different models and approaches 

to measure risk were created to better fit to institutions needs. 

In this context we have gap analysis, whose purpose was to give an idea of interest-rate 

risk exposure faced by financial institutions. In simple terms, the gap analysis measures the 

change in net interest income due to change in interest rates. It is determined by the 

difference between repricing assets and repricing liabilities. Therefore, a negative gap 
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indicates a risk exposure to increasing rates. As pointed by Dowd (2002, p.4), although 

simple to carry out the gap analysis has its own limitations: "it only applies to on-balance 

sheet interest-rate risk, and even then only crudely; it looks at the impact of interest rates on 

income, rather than on asset or liability values; and results can be sensitive to the choice of 

horizon period." 

Another method developed to measure interest-rate risk was duration analysis. 3 It 

captures the sensitivity of an asset price to movements in yields. The advantage of this 

approach over the gap analysis is that it focuses on changes in asset (or liability) values, 

rather than just change in net income. However, the method has also some pitfalls: it ignores 

risks other than interest-rate risk; it only takes a first-order approximation to the change in 

the bond price;4 and it only considers parallel shifts in interest rates. 5 As Lam (2003, p.184) 

states, "in real life, shifts in the interest rate curve are often anything but parallel." To 

circumvent the parallel hypothesis other measures of duration have been created. 

Denominated by Ho (1992) as key rate durations, these powerful tools have become popular 

in measuring non-parallel risks. The author defines them as a vector representing the price 

sensitivity of a security to each key rate change. The main attribute of these tools is that they 

assume that multiple market factors drive the yield curve movement. Like the others, 

however, the key rate durations approaches have also some shortcomings: they are 

unintuitive requiring some experience and familiarization; they ignore correlations between 

shifts at different reference maturities; and they are based on perturbing a theoretical zero 

coupon curve rather than observed yields on coupon bonds, which introduces some 

arbitrariness into the results. 6 

A different approach to measure risk is the scenario analysis. In this technique possible 

scenarios (product of an event or combinations of events) are created to quantify its impact 

3 Mathematically, duration is defined as follows: D = t [ix PVCF; Vt PVCF; , where PVCF; is the 

present value of the period i cash flow, discounted at the appropriate spot period yield. 
4 Dowd (2002, p.4) 
5 Lam (2003, p.184) 
6 For more details see Phoa (2001 ). 
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on the enterprise. The purpose is to determine the size of potential losses related to specific 

scenario. As nicely posted by Lam (2003, p.192): 

"Scenario analysis typically goes beyond the immediate effects of predefined market moves and 

tries to draw out the broader impact that events may have on the revenue stream and business. It 

is meant to help management understand the impact of unlikely but catastrophic events, such as 

major changes in the external macroeconomic environment that will have an effect well beyond 

any immediate impact on the value of a trading portfolio." 

In a few words, the scenano analysis works as follows. Once defined the relevant 

variables and how they evolve over time, the risk manager analyses the risk exposure by 

looking at the possible results for each scenario assumed. An important aspect of this 

approach is that it relies on subjective choices made by the analyst. Further, it tells nothing 

about the probability of occurrence of each scenario. So depending on the choices and beliefs 

of the analyst, the scenario analysis can bring diverse results and, consequently, lead to 

different actions. 7 

More recently, in the mid-90s, the bank JP Morgan developed a standard risk measure 

for financial risk management, called Value-at-risk (henceforth VaR). The idea was to create 

a general measure of economic loss that could incorporate the diverse risk across positions 

and aggregate them on a portfolio basis. In simple terms, VaR gives the maximum loss 

possible over a period of time at a predefined confidence level. It is essentially a static model 

(one-period model) like scenario analysis. Positions remain unchanged over the risk horizon. 

In fact, there are three different approaches to the calculation of VaR: parametric V aR, 

Monte Carlo simulation, and historical simulation. All forecast risk by analyzing historical 

patterns of market variables but they also differ in some aspects. Importantly, these methods 

are not exclusives and can be used together to provide a more robust VaR estimates.8 

7 Dowd (2002, p.5) 
8 Gallati (2003) 
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The most common and also the simplest one is the parametric VaR. Fast and simple to 

calculate, this method requires only the parameters defining the distribution of the historical 

data. Having this information, the analyst can easily estimate the V aR parameter by fitting a 

curve through the data. However, this approach assumes that the changes in the portfolio 

value follow a certain distribution, implying that the method is accurate when the distribution 

choices are correct. Therefore, when using this method the analyst should carefully consider 

the statistical distribution and the data used. 

Nevertheless, the traditional models of VaR suffer from some shortcomings. One critical 

aspect of the analysis using parametric VaR relates to the assumptions on the distributional 

properties of the underlying risk factors. Violations of the assumptions can lead to misleading 

results. For example, when the distribution of losses is not normal, which is generally the 

case (Hendricks, 1996), the model doesn't perform well when the normality assumption is 

assumed. 

In the historical simulation approach, returns are obtained from the time senes of 

historical asset prices. It is essentially a nonparametric method, being independent regarding 

nonlinearities and nonnormal distributions. So, the returns of the risk factors do not need to 

be independent and normally distributed over time as in the parametric method. Because it is 

based on actual prices, this approach considers fat tails. As long as extreme events are 

contained in the data set, they are considered in the simulation. On the other hand, this 

method also has some criticisms. The model is based on the past to foretell the future. This 

brings extreme dependence on a particular historical data set and its idiosyncrasies. Also, the 

model cannot accommodate changes in market structure and may not adequately represent 

current market conditions. Finally, the quality of its estimation is linked to the length of the 

data set. 9 

9 For a more detailed discussion about the VaR approaches see Gallati (2003, Ch. 5) and Crouhy, Galai and 
Mark (2001, Ch. 4). 
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The Monte Carlo simulation approach follows the same idea behind the historical 

simulation method, except that it generates stochastic returns using a defined stochastic 

process and statistical parameters that drive the process. In this case, the distributions of the 

risk factors are generated by using a model created from a set of random variables. The 

special feature of this kind of approach is that it can be applied to any analytic multivariate 

distribution for the risk factors. Distributions with fat tails and skewness (asymmetry), like 

student t-distributions, are among the possible distributions in which the analyst can adopt to 

calculate the VaR using Monte Carlo simulation. 

Comparing the Monte Carlo simulation approach and the historical simulation 

technique, it can be noted that the former is more computationally intensive than the last one. 

It involves re-valuating the portfolio under each scenario and, as pointed by Hawkins (2000, 

p.146), it requires a large number of simulations or paths before the VaR converges towards 

a single number. 

A general shortcoming of VaR approaches is that different models describing the market 

behavior can result in different outputs. For instance, Beder (1995) shows that different 

results for same portfolios can occur depending on which VaR technique is adopted. 

Furthermore, the results reveal that the VaR measure is highly dependent on parameters, 

data, and assumptions. 

But perhaps the most serious conceptual problem with VaR is that it disregards any loss 

beyond its critical value. This problem, called the tail risk, was address by Artzner et al. 

(1997) and Embrechts et al. (1998). Being aware of this fact is so critical that, as shown by 

Yamai and Y oshiba (2005), in certain real-world cases investors may take wrong decisions 

based on VaR. The example presented by the authors is an investor who assembles his 

portfolio without taking into account the magnitude of unlikely losses (losses beyond the 

VaR critical value) that eventually may occur. The authors also show that in high volatile 

markets or in markets in which the assets have extreme dependence structure, VaR may 

underestimate risk. Further, using a dynamic portfolio optimization framework, Basak and 
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Shapiro (2001) show that an investor who wants to maximize his utility under VaR constraint 

could result in choosing a position that can lead to losses beyond the VaR critical value. 

Additionally, Y amai and Y oshiba (2002) present the same problem for the case of a 

concentrated credit portfolio and far-out-of-the-money option. 

To circumvent the main weakness of the VaR technique, Rockafellar and Uryasev 

(2000, 2002) suggest the Conditional Value-at-Risk, or CVaR, 10 which takes into account 

losses outside the V aR quantile. Supported by the extreme value theory (EVT), the CVaR 

represents the conditional expectation of loss (mean loss) that is beyond the VaR level. It 

basically indicates what we can expect to lose given the loss is beyond the VaR. 

Consequently, the CV aR will always produce a risk measure that exceeds the VaR. As 

pointed by Dowd (2002, Ch. 2), the CVaR has the many attractions of the VaR measure and, 

further, it has also some additional advantages: the CVaR tells the analyst what to expect in 

bad states (tail events); it does not discourage risk diversification as the VaR sometimes does; 

and the CVaR estimates are less prone to sampling error than VaR. 

Finally, there is the stress testing approach. It is essentially a scenario analysis but 

totally focused on crisis situations. The main objective of this kind of analysis is to capture 

the vulnerability of a portfolio or position to hypothetical events. It seeks to quantify the 

magnitude of loss if abnormal situations eventually occur. As pointed by Dowd (2002, p.202) 

the stress testing should be used as a complement to probability-based risk measures such as 

VaR and CVaR because it gives a lot of information about bad states, which is missed by the 

probabilistic approaches. 

This study aims to verify empirically the applicability of parametric and non-parametric 

approaches to measure risk (VaR and CVaR) for the Brazilian market index (Ibovespa) 

traded on the Sao Paulo Stock Exchange. The period used for analysis goes from the first day 

of trade of 1995 to the last day of trade of 2004. Parametric approaches used assume that 

10 This risk measure is also called in the literature as expected tail loss, expected shortfall, tail VaR, tail 
conditional expectation and worst conditional expectation. 
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daily returns follow a normal and at-distribution. Non-parametric approaches adopted are the 

historical simulation and the volatility-weighted historical simulation technique. 

The remainder of this work is structured as follows. In the next section, formal 

definitions of VaR and CVaR measures are presented. Section 3 introduces the methodology 

used in this study. Section 4 reports the results of the tests applied. Section 5 briefly 

summarizes our findings. 
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2. VaR and CVaR: formal definitions 

Since Value-at-Risk (VaR) was developedl 1, it has become a standard tool of risk 

measure among financial institutions. The idea behind the technique is that, given a time 

horizon and confidence level, VaR estimates the maximum loss that can possibly occur. The 

appeal of the VaR measure relies on the fact that it aggregates the several components of risk 

into one single number. Additionally, as pointed out by Penza and Bansal (2001, p.62), the 

technique is flexible in the sense that by only choosing the appropriate period of time and 

probability level, the tool can be adapted to institutions' specific needs. 

As an alternative measure, the Conditional Value-at-Risk (CVaR) came to overcome 

some weaknesses found for the VaR measure. It is essentially the expected value of the 

losses beyond VaR. The CVaR measure is directly related to the VaR measure. 

There are different ways to measure VaR and, consequently, CVaR.12 They can be 

classified in two broad categories: parametric approaches and non-parametric approaches. 

This section presents the formal definitions of the approaches used in this study to measure 

VaR and CVaR. 

2. I Parametric approaches and VaR 

The parametric approaches seek to estimate VaR and CVaR measures based on 

assumptions about the distribution of returns. In this case, it is necessary to explicitly specify 

the distribution from which the data observations are drawn. The distribution assumptions 

assumed to estimate VaR and CV aR from the parametric approaches used in this study are 

the normal and the student t-distribution. Because daily stock returns are found to have fat 

tailed distribution (Campbell et al. (1997)), it is expected that the VaR and CV aR measures 

11 See JP Morgan (1994, 1997) and Phelan (1997). 
12 See Duffie and Pan (1997) for an overview. 
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from the t-distribution will be more accurate than when assumed that the returns are normally 

distributed. 

The general form of the VaR measure, which is valid to any distribution (discrete or 

continuous), can be obtained from the probability distribution of returns f (R). In this case, 

we find the worst possible realization R * (the cut-off return) for a given confidence level (cl), 

such that the probability of a value lower than R*, p = P(R:::; R*), is 1-cl:13 

R* 

1-cl = ff(R)dR = P(R:::; R *)= p (1) 
-Cf) 

One assumption that can be made when using a parametric approach is that returns are 

normally distributed. So, if the returns of a position, R, are normally distributed with mean, 

µR, and standard deviation, CYR, then the analytic density function is given by: 14 

(2) 

If cl is the confidence level and R* is the cut-off return, then follows that the VaR in 

terms of returns is: 

(3) 

The parameter a c1 represents the standard normal variate corresponding to the 

confidencelevelcl(e.g., a095 =-1.645 and a 0.99 =-2.326). Itcanbedirectlyobtainedfrorn 

standard statistical tables. 

13 Jorion (2001, p.110) 
14 This derivation follows the one presented by Grouhy, Galai and Mark (2001, p.192). 
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Graphically, we can represent the VaR estimation as follows. If, for example, we choose 

a holding period t (it might be one day, one week or one month, for example), which is the 

period of time over which the parameter of interest (for example, profit/loss or asset return) is 

measured, and a confidence level cl of 95 percent, the Value-at-Risk is the loss in market 

value over the period of estimation that is exceeded with probability 1-cl. Supposing that the 

data we are interested in analyzing is normally distributed with mean 0 and standard 

deviation 1 over the holding period t, the VaR estimate at the 95% cl is -1.645 and at 99% cl 

is -2.326. Figure 1 illustrates both cases. 

0.4 //-\ VaRat.9.5% 

>- 0.3 
d = -1.64.5 

;!: 
li re: VaRat.99% ..Q 

2 
0.. 

0.2 cl= -2 .326 

0.1 

............... 

-3 -2 -1 0 2 3 

Profit~oss or asset return 

Figure I: VaRs at the 95% and 99% confidence levels from a standard normal distribution. 

The probability density function shows the point on the x-axis corresponding to the 

VaR, which is the critical value or maximum loss for the confidence level chosen. It is easy 

to note that the VaR is increasing in confidence level and, in general, in longer holding 

periods. As pointed by Jorion (2001, p.116), under certain conditions one can obtain the same 

value of VaR increasing one or the other factor. 

For arithmetic returns, RA , assuming that all dividends are reinvested continually in the 

asset itself, the asset return is given by the formula: 

(4) 
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Where P represents the asset price in different times. Associating the VaR measure in terms 

of arithmetic returns, VaRRA, with the VaR measure in terms of the critical value of price 

(p• ), VaR, follows that: 

A* (p• - ~-J VaR 
R - --- -

~-] ~-] 
(5) 

And therefore: 

(6) 

As we can see, it is easy to obtain the VaR measure in terms of losses in price from the 

VaR measure in terms of arithmetic returns and vice-versa. However, when calculating one 

of these V aRs is important that the distribution assumption be coherent with the data. In this 

case, the assumption may vary depending the type of data used (profit/loss or return). 

2.1.1 VaR and distribution properties 

An important aspect of the distribution assumption is the data fit. Violations on the 

distribution assumption should be considered carefully; otherwise the outcomes could lead to 

major errors in the risk analysis. So, before extracting conclusions, one should first find the 

distribution that better represents the data. 

For that we can check if the distribution generated by the data approximates to the 

normal or some other type of distribution. The normal distribution is fully described by two 

parameters, mean and standard deviation. Further, it is characterized by been symmetric 

(zero-skew) with a kurtosis of 3. 
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To verify the asymmetry or skewness of the distribution, the third moment 1s the 

appropriate measure. Mathematically, it is calculated as follows: 

Skew= E(R - µ )3 / a 3 (7) 

A zero skewness coefficient means that the distribution is symmetric. A non-zero and 

positive skewness coefficient means that the distribution is not symmetric and has a long tail 

on the right and a short tail in left side. A negative number indicates the opposite. Therefore, 

the sign of the skewness coefficient indicates the direction of the skew. 

An example of a non-symmetric distribution is the lognormal distribution. Because the 

price of an asset (or portfolio) cannot be negative, the resulting distribution has a short tail in 

the left and a long tail in the right side. Figure 2 illustrates this case. 

0.60 

::--. 0-45 
;!;;; 
:;:; 
~ £ 0.30 \ 

0.15 

2 3 4 5 6 7 
Asset price 

Figure 2: A lognormally distributed asset price 

In terms of returns, considering the aspect of non-negative pnces, working with 

geometric returns is more plausible than with arithmetic returns. Assuming that all dividends 

are reinvested continually in the asset itself, the geometric return, Re, is given by the 

formula: 
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R,G = log(_!l_) 
P,_1 

(8) 

In this case, the assumption of normally distributed returns becomes more realistic because 

the left tail of the distribution such as log(P, I P,_1)----+ -oo is achieved as (P, I P,_1 )----+ 0 or 

P, ----+ 0. Therefore, the assumption that geometric returns are normally distributed implies 

that the logarithm of P, follows a normal distribution and P, itself follows a lognormal 

distribution. For arithmetic returns, the assumption of normal distribution implies that the left 

tail (P, - P,_1 )! P,_1 ----+ -oo is achieved as (P, I P,_1 )-1 < -1 or P, < 0 which is economically 

meaningless. 15 

Analogous to the case of arithmetic returns, given a confidence level cl, the critical 

value of a geometric return Re, Re* or VaRR(j, is: 

RG G* 
VaR = R = µR(i + ac1CJRr; (9) 

To find the VaR measure in terms of the asset price, first we should find the critical 

value P* . This measure is derived directly from the geometric return formula. 

G* ( P,* ) * R, =log - = logP, -logP,_1 
P,_1 

(10) 

* G* ~ log P, = R1 +log P,_1 (11) 

15 Jorion (2001, p.99-100) 
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• I G* J ~ ~ = explR1 + log~_1 (12) 

(13) 

Finally, we can define an expression for the V aR measure for geometric returns in terms 

of the asset price change. By definition, the VaR is: 

VaR =~_1 -~· (14) 

~ VaR = ~-i - expl,u RG + ac1(J' RG +log ~-i J (15) 

So, due to the asymmetric aspect of asset prices, when considering obtaining the V aR 

measure in terms of the asset price change from V aR in terms of returns, it is more plausible 

to use equation 15 rather than equation 6. It rules out the possibility of negative asset prices. 

An additional measure that can be used to verify if the distribution assumed fits the data 

is the kurtosis parameter. It is measured by the fourth moment of the distribution. The 

kurtosis of a distribution is given by the following equation: 

Kurtosis = E(x - µ )4 / (7 4 (16) 

This parameter gives a measure of tail flatness of the distribution. For normal 

distributions the kurtosis is 3. A kurtosis parameter greater than 3 means that the tail of the 
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distribution is fatter than the tail of the normal distribution. A kurtosis parameter less than 3 

means the opposite (thinner tails). 

As shown by Campbell et al. (1997, ch.1 ), when analyzing individual stock returns 

distributions one can expect that the distributions will most likely exhibit "fat tails" (kurtosis 

> 3). These distributions differ from normal distributions in the sense that they present more 

observations in the extreme areas. 16 To deal with "fat tails" return distributions, one can use 

the student t-distributions. These distributions are fully described by the mean, µ, and the 

standard deviation, (J, of the portfolio return, and, additionally, by a parameter controlling the 

fatness of the tail (the degree of leptokurtosis) denominated "degree of freedom", v. Higher 

values of v indicates more approximation of the distribution to a normal distribution with 

. ·1 17 s1m1 ar parameters. 

Calculating VaR from a student t-distribution is similar to a normal distribution, except 

that we have to use the appropriate analytic density function flR). 

(R)- r[(v+1)12] 1 1 
f - r(v/2) ,,};; (l+R 2 1vt+1)12 

00 

Where r is the gamma function defined as r( v) = f R v-l e -R dx . 
0 

So the VaR measure from a t-distribution becomes: 

(17) 

(18) 

16 It is important to note, however, that by the central limit theorem, a well-diversified portfolio return might 
still exhibit a normal distribution even when individual asset returns composing the portfolio do not follow a 
normal distribution. 
17 Grouhy, Galai and Mark (2001, Ch. 3) 
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Note that the t VaR formula contains the additional multiplier term ~(v- 2)/v, which 

moderates the effect of the standard deviation on the VaR. Also, the confidence level term, 

ac1,v, now refers to a student !-distribution instead of a normal one, and so depends on v as 

well as cl. 18 

As stated by Grouhy, Galai and Mark (2001, p.192), these distributions are of great 

attention to risk managers because they are aware that extraordinary losses occur more 

frequently than a normal distribution predicts. Intuitively, the VaR measure obtained from a 

student t-distribution will always be greater or equal to the VaR measure obtained from a 

normal distribution. 

2. 2 Coherent risk measure 

An important aspect of a risk measure like VaR is that it must satisfy the characteristics 

of a coherent risk measure. According to Artzner et al. (1997, 1999) any risk measure should 

establish a correspondence p between the space X of random variables and a non-negative 

real number; p : X ~ R, in order to be a coherent risk measure.19 Scalar measures of risk 

allow to order and compare positions according to their respective risk value. Therefore, p 

must satisfy the following properties: 

(a) Positive homogeneity: p(A.x) =A. p(x) for all random variables x and all positive 

real numbers A.. 

(b) Subadditivity: p(x + y) :S p(x) + p( y) for all random variables x and y; it is easy 

to note that any positively homogeneous functional p, is convex if and only it is 

subadditive. 

( c) Monotonicity: x :Sy implies p(x) :Sp( y) for all random variables x and y. 

18 Dowd (2002, p.83) 
19 For a more detailed discussion about this theory see Frittelli and Gianin (2002) and Szego (2002). 
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(d) Transitional invariance: p(x + ar0) = p(x) - a for all random variables x and 

real numbers a, and all riskless rates r0. 

However, VaR turns out to be an inadequate risk measure for the case in which the joint 

distribution of return is non-elliptical. In this case, VaR may not satisfy the subadditive 

property behaving as follows: 

(19) 

where Rl and R2 denote the returns of two portfolios and cl denotes the confidence level. 

This means that the VaR of a combined position may be greater than the sum of the VaRs of 

the positions considered individually. 

Nevertheless, Artzner et al. (1999) show that the quantile-based VaR measure only 

satisfies the subadditivity property when the return distributions are normal (or more 

generally, elliptical). 

2.3 Parametric approaches and CVaR 

To circumvent the problem of non-subadditivity property, Rockafellar and Uryasev 

(2000, 2002) suggest a different risk measure, called Conditional VaR (CVaR). The CVaR 

parameter measures the magnitude of potential losses in the tail by determining the expected 

extreme loss with a predefined confidence level. It is the conditional expectation of loss 

given that the loss is beyond the VaR level. Mathematically, the Conditional VaR can be 

defined as follows: 

R* 

fRf(R)dR 

CVaR R = E[ R I R ~ VaR R] = --;-. --- (20) 

f f(R )dR 
-00 
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The CVaR for the case of a normal distribution is shown in Figure 3. Holding the 

assumption of standard normal distribution, the CVaR at the 95% confidence level is -2.061. 
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>- 0.3 

,~~-:,:,I \ ~ :n 
~ 
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' 
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Figure 3: CVaR at the 95% confidence level from a standard normal distribution. 

The CVaR is calculated as the average of the tail VaRs at a chosen confidence level. It is 

the probability-weighted average of tail losses, or losses exceeding VaR. The CVaR measure 

satisfies all proprieties of a coherent risk measure. So, now aggregating individual risks does 

not increase overall risk. However, estimating CVaR is computationally more intensive and 

sometimes its estimation can be significantly more difficult. 

2.4 Non-parametric approaches and VaR and CVaR 

Non-parametric approaches do not require making assumptions about the distribution of 

returns. VaR and CVaR measures are obtained directly from the empirical distribution. All 

non-parametric approaches assume that the near future risk can be forecasted by using data 

from a precedent period. The most popular non-parametric approach is the historical 

simulation. 20 

The estimation of VaR usmg the historical simulation technique consists simply in 

taking the observation from the frequency histogram drawn from the empirical data. The 

20 There are others non-parametric approaches used to estimate VaR and CVaR as bootstrap methods, non­
parametric density estimation methods, and principal components and factor analysis methods. 
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observation that cuts off the lower one minus the confidence level (i.e., 1-cl) of very high 

losses from the rest of the distribution determines the VaR measure. The CVaR is obtained 

by taking the average of the tail VaRs. 

One important aspect of this kind of approach is the choice of the length of the data 

period used to estimate the VaR and CVaR measures. Choosing large periods for estimation 

gives raise the problem of aged data. On the other hand, choosing small periods may lead to 

imprecise VaR estimations and, sometimes, the CVaR estimate cannot be achieved. Also, if 

the past data is equally weighted, unlikely to recur past events will influence the estimation 

of VaR until they get old enough to be excluded. This fact, called ghost effects, causes the 

estimation being less responsive to current market conditions. 

One way to reduce the ghost effects is to modify the simple historical simulation method 

by given weights to the past data (Boudoukh, et al. (1998)). Age weighting treats most recent 

observations as having more important information to forecast the near future risk. However, 

as pointed by Hull and White (1998a), this method reduces the effective sample size. In 

addition, Pritsker (2001) shows that VaR estimates using age weighting can still be 

insufficiently responsive to changes in the underlying risk. 

An alternative way to weight the data, suggested by Hull and White (1998a), is to use 

volatility. Volatility-weighted historical simulation takes account recent changes in volatility 

to update return information. This approach estimates VaR by replacing the returns in the 

data set, rr,;, with volatility-adjusted returns, r;,;. The VaR and CVaR measures are then 

found in the usual way. The volatility-adjusted returns are calculated as follows: 

(21) 

Where rr; is the historical return on asset i on day T in the historical sample, a 1 ; is a 
' , 

historical forecast measure of the volatility of the return on asset i on day t, made at the end 
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of day t-1, and a T,i is the most recent forecast of the volatility of asset i. In this formula, if 

the current forecast of volatility is greater than the estimated volatility of period t, then the 

actual returns in any period Twill be higher. 

To apply this method it is therefore necessary to forecast the volatility of the return on 

the asset. For that, one can use the exponentially weighted moving average (EWMA) model. 

The estimates of the volatility using the EWMA model follow the equation:21 

(22) 

Where the estimate, a 1 , of the volatility for day t (made at the end of day t-1) is obtained 

from at-1 (the estimate from one day ago of the volatility for day t-1) and rt-1 (the most 

recent observation on changes in the daily return). 

As can be noted the volatility-weighted historical simulation produces risk estimates that 

are sensitive to volatility changes. Further, it can produce VaR and CVaR estimates greater 

than the maximum loss in the data set in high volatile periods. So this eliminates limit in VaR 

and CVaR estimates imposed by standard historical simulation approaches in which the 

maximum future loss cannot exceed the maximum past loss. Finally, Hull and White (1998a) 

present empirical evidences that the volatility-weighted historical simulation approach 

produces superior V aR estimates than the approaches that do not take account of volatility 

changes. 

21 The derivation of the equation characterizing the EWMA model is presented in Appendix A. 
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3. Method 

3.1 Sample 

The sample adopted involves the daily historical returns of the Brazilian stock index22 

(Ibovespa) traded on the Sao Paulo Stock Exchange. The sample starts from the first day of 

trade of 1995 to the last day of trade of 2004. Figure 4 presents the time series plot of the 

Brazilian market index values for this period. Numbers are referred to the close value of the 

day. 

Brazilian Stock Index Plot 
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Figure 4: Daily quotes of the Brazilian stock index (Ibovespa) from January of 1995 to December of2004. 

From the graph above, it can be noted that there is an overall positive trend in returns. In 

the first day of trade of 1995, the market was set at 4,319.07 points and in the end of 2004 it 

reached a total of 26,196.25 points, representing an impressive 506.52% increase. However, 

there are different moments during the evolution of this market index. Specifically, one can 

22 The stocks compounding the lbovespa index are presented in Appendix B. 



www.manaraa.com

23 

observe alternations between positive and negative moments in this market. First, there is a 

short period in which the market dropped to 2, 138.27 points (03/09/1995). Then, the market 

clearly followed a positive path reaching the peak of 13,617.30 points (07/01/1997). After 

that, a down period that takes the market back to the 5,000s points is followed by a rapidly 

recovery during the year of 1999. Next, the market takes a long period of down tendency, 

accentuated with the approximation of the presidential election when Luis Ignacio Lula da 

Silva (Lula) was elected. After the uncertainty about the economy was solved and no tum 

around policies were announced, an expressive positive path followed and the market ended 

up with the maximum points reached by the index in the whole period. 

The choice of the period for the risk analysis (Jan/1995 to Dec/2004) relies on the fact 

that it is characterized by low inflation rates, which occurred during the Real plan. As Leal 

and Rego (1997) point out, the high inflation rates observed before the Real Plan distorted 

asset prices traded on the Brazilian Stock Market (Bovespa). Therefore, the total length of 

time for estimation and test of each model corresponds to 10 years. When the length of time 

used for estimation of the first daily VaR is 1 year, the length of time for testing is 9 years. 

Two years for estimation implies 8 years for testing, and so on. 

3.2 Estimation approaches 

In this study, parametric and non-parametric approaches (historical simulations) are used 

to evaluate the effectiveness of different risk measure techniques in the context of daily stock 

index returns. The accuracy of the VaR estimates is tested by the failure rates predicted by 

the models and the CVaR measures are compared to the losses exceeding VaR through the 

sample differences paired test. This section present the procedure used to test empirically 

those models. 

For each model tested, different horizons of time were adopted to calculate the VaR 

measure. The purpose is to verify whether different choices of length of time affect the 

results. The horizons of period assumed for estimation ofVaR are 1, 2, 3, 4, and 5 years. The 
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VaR values are updated daily and the data used for estimation also moves accordingly. Then 

each actual daily return is compared to the daily VaR measure, giving a frequency of tail 

losses. 

The prev10us section presented the mathematical definitions of VaR measures for 

parametric models. These models require a distribution assumption. If the empirical 

observations approximately coincide with the theoretical distribution assumed, then it is 

expected that the model perform well in forecasting risk. Otherwise, if the assumption is not 

appropriate, there is no reason to believe that the risk measures are accurate. 

In this study, the first parametric VaR calculated assumed that returns are normally 

distributed. In order to be more coherent with the normal assumption, returns are taken in the 

logarithm form. As seen before, the normal VaR can be obtained by: 

(23) 

The actual values of the parameters are not known, so VaR estimates are based on 

estimates of the parameters. Mean and standard deviation estimates are calculated in the 

usual way. The length of time used to estimate the standard deviation was 150 days. The 

mean, however, corresponds to length of time chosen to estimate VaR (1, 2, 3, 4, or 5 years). 

The standard normal variate, a c1, corresponding to the chosen confidence level, is obtained 

directly from statistic tables. For 95% confidence level, the value of ac1 is -1.645, and for 

99% cl is -2.326. 

An alternative parametric approach selected was using the assumption that log returns 

follow at distribution. According to Wilson (1993) this assumption fits better when working 

with log returns of financial assets. The estimate V aR formula, in this case, is very similar to 

the normal one except that it includes an additional multiplier term and ac1,v now refers to a 

Student !-distribution and depends on v as well as cl. The t-VaR formula is: 
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(24) 

The number of degrees of freedom, v, assumed is 10 and hence the critical values for the 

95% and 99% probability levels are -2.23a and -3.17a, respectively. The number of degrees 

of freedom follows the same as used by Penza and Bansal (2001, p.15 5) when studying 

parametric VaR estimates for market indexes (MIBTEL, DAX, NYSE). Mean and standard 

deviation are the same as calculated when considering normal distribution of returns. 

The VaR estimation using the non-parametric historical simulation approach is much 

simpler. It consists basically in assembling the histogram of frequency and taking the 

observation corresponding to one minus the chosen confidence level. So, when we are 

interested in estimating the VaR measure for the 95% confidence level, we simply take the 

observation that corresponds to the 5% tail loss. For example, for the case of one-year period 

of estimation (247 observations), the VaR measure, at the 95% confidence level, corresponds 

to the 13th (247*0.05, approximately) smallest return in this sample. It is easy to note that in 

this approach all observations included in the estimation are given the same weight no matter 

its age. So long past observations have the same impact on estimation as near past 

observations. This fact brings the problem of ghost effects becoming the VaR estimation less 

responsive to market changes. Additionally, this approach does not consider that the market 

volatility varies over time. 

In order to incorporate these aspects, we weight the data by volatility as suggested by 

Hull and White (1998a). This approach consists in updating return information by taking 

account recent changes in volatility. Returns used to estimate VaR become volatility-adjusted 

as follows: 

(25) 
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Therefore, actual returns in any period T are increased (or decreased) depending on 

whether the current forecast of volatility is greater (or less than) the estimated volatility for 

period t. 23 The gap in volatility of one month was used to adjust returns. 

Because it is more plausible to assume that recent observations are more important in 

forecasting the near future risk than old observations, we can add in this aspect by means of 

the volatility estimation. For that, we estimate volatility using the exponentially weighted 

moving average (EWMA) method. This technique places more weight on recent 

observations, reducing the ghost effects, and also captures volatility clusters. The EWMA 

variance estimate was calculated as follows: 

n 

a,2 = (l-A-)LA-Hrr~i 
i=l 

(26) 

Attaining the volatility estimates through the formula above, we easily calculate the 

volatility-adjusted returns and, then, proceed as described for the historical simulation 

approach to obtain the VaR estimates. 

3. 3 Supporting tests 

Before extracting conclusions from preliminary outputs, it is important to look for tests 

that give support and legitimacy to the results. The supporting tests applied in this study are 

hereafter described. 

Because the parametric approach assumes some theoretical distribution to estimate VaR, 

it is a good idea first to conduct a test that evaluates the distribution of the observed returns. 

A widely used test is the Kolmogorov-Smirnov test. It compares an observed cumulative 

distribution function to a theoretical cumulative distribution. Parameters of the theoretical 

distribution are estimated from the observed data. In this study, the normal distribution is 

23 Dowd (2002, p.68) 
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selected. Although, the test may reject the distribution assumed the parametric VaR is still 

considered to confirm if the inadequacy of the assumption is reflected in the empirical 

results. Additionally, the kurtosis and the skew parameters are calculated in order to obtain a 

better characterization of the empirical distribution. 

In order to verify the prediction correctness of each model, the binomial test (Kupiec 

(1995)) is applied. Using the failure rate, which is given by the proportion of times VaR is 

exceeded, this test evaluates whether the number of exceptions is acceptably small. Basically, 

the binomial test compares the observed values to the hypothesized values. So, to implement 

Kupiec's test we first need to modify the observations to a binomial framework. In this case, 

each observation exceeding VaR takes form of one and non-exceeding observations becomes 

zero. The sequence of failures x follows a binomial probability distribution given by: 

(27) 

Where n is the number of observations and p is the predicted frequency of tail losses. 

Therefore, the expected value of x is pn and its variance is given by p(l - p )n . 

If n is large enough, by the central limit theorem, the binomial distribution can be 

approximated to the normal distribution. Then follows that: 

x- pn ( 
z = ~ ( ) ~ N 0,1) 

p 1-p n 

The null hypothesis tested is "the model gives good prediction about the number of 

losses that one should expect to exceed the VaR measure." 

(28) 
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However, the binomial test only focuses in the frequency of the tail losses. The sizes of 

the losses are not evaluated by this test. Nevertheless, the VaR measure doesn't try to 

estimate the loss when it is beyond its value. This is out off its scope. On the other hand, the 

CV aR measure gives the expected loss given the loss is greater than VaR. Therefore, this 

measure is appropriate to be included in the test involving the size of the losses. 

The test used to evaluate the effectiveness of the CVaR measure in predicting the value 

of the losses when these are greater than VaR was the t-test for paired samples differences. 

This test determines whether two samples are likely to have come from the same two 

underlying populations that have the same mean. The procedure used to apply this test was as 

follows. First, the mean value of the losses that exceeded the VaR measure was calculated. 

Then, each value of CVaR corresponding to the days in which the losses were greater than 

VaR was taken and its mean was obtained. Finally, the t-test for paired samples was applied 

in order to verify if the two means are statistically different. 
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4. Results 

This section presents the empirical results attained in this study. First, it is presented an 

analysis about the data used. Following are the performance results of the models selected to 

measure risk in the context of daily returns of the Brazilian stock market index. It is shown 

the accuracy of parametric and non-parametric approaches in forecasting the maximum loss 

expected given a confidence level (V aR) and the ability of these models in predicting the 

value of losses exceeding VaR (CVaR). 

4.1 Data analysis 

Lets take a look on the distribution of the daily returns during the period selected 

(Jan/1995 through Dec/2004). This information might give a good indication of what we 

might expect from the parametric models selected. Figure 5 shows the histogram of daily log 

returns for the Brazilian market index during the 10-year period of test. A normal distribution 

has been fit to the data based upon the data's sample mean and sample standard deviation. 
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Figure 5: Histogram of daily log returns for the Brazilian market index during the 10-year period 1995 through 
2004. A normal distribution has been fit to the data based upon its sample mean and sample standard deviation. 
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Comparing the normal curve and the histogram, it can be noted that the histogram is 

leptokurtic. The Kolmogorov-Smirnov test also confirms that the distribution is not normal. 

The empirical distribution has a higher concentration of returns in the central area than the 

normal distribution predicts. This might lead us to believe that it has a lower standard 

deviation. However, it has also fatter tails, which goes in the opposite direction. Table 1 

compares the mean, standard deviation, skewness, and kurtosis of the normal curve and 

histogram. 

Table 1: Parameters of the normal distribution compared with sample parameters of the histogram of 
log returns for the Brazilian market index. 

Normal Histogram 
Distribution 

Mean 0.072% 0.072% 

Standard Deviation 2.533% 2.533% 
Skewness 0.00 0.61 

Kurtosis 3.00 13.29 

The kurtosis found for the histogram was 13.29, confirming that the distribution is more 

peaked at the center and has fatter tails. The measure of asymmetry of the distribution 

(skewness) found was 0.61, which suggests that the empirical distribution is slightly 

asymmetric. The positive number indicates the presence of a short tail in the left and a long 

tail on the right. These aspects suggest that the t-distribution might be more adequate to 

model the V aR measure. However, it is important to note that this histogram represents the 

distribution of returns for the entire period and the V aR estimates are obtained from 

histograms assembled with partial data. So, not necessarily, the partial data histograms will 

have the same characteristics of the histogram presented above and the normal assumption 

might be still a better approach to use. 

Observing the sample distribution statistics for different horizon periods (table 2), it can 

be noted that there is extreme variation of the kurtosis and skewness parameters for all 

periods of estimation. For example, histograms assembled with 1-year sample period had a 

minimum kurtosis of 0.449 and a maximum of 44.262, and a minimum skewness of -1.520 
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and a maximum of 4.518. The highest standard deviation for the kurtosis parameter was 

observed for 3-year histograms, and for 2-year histograms for the skewness parameter. 

Table 2: Parameters of the distributions assembled with log returns of the Brazilian market index for different 
horizon periods (1, 2, 3, 4, and 5 years). 

Length Kurtosis Skewness 

of period Mean St. Dev. Minimum Maximum Mean St. Dev. Minimum Maximum 

1 year 3.304 5.660 0.449 44.262 0.003 0.768 -1.520 4.518 

2 years 5.744 6.799 0.249 37.031 0.091 0.805 -1.332 3.377 
3 years 7.897 6.924 0.409 30.184 0.234 0.701 -1.285 2.491 
4 years 10.206 6.788 0.749 25.440 0.469 0.527 -0.338 2.011 
5 years 12.116 5.923 0.787 25.697 0.560 0.444 -0.231 1.871 

These facts illustrate that the distribution characteristics vary over the period of analysis. 

Sarne horizon period distributions give signs of fat and thin tails depending on the moment 

the parameter is taken. The asymmetric parameter also changes over time. These aspects of 

the distributions indicate that parametric approaches might be not suitable to model risk for 

the Brazilian market index. 

4.2 Normal VaR (N-VaR) 

As stated in the prev10us section, the binomial test (Kupiec (1995)) can test the 

effectiveness of each model in predicting the number of losses exceeding the VaR measure. 

Table 3 presents the results for the parametric approach assuming returns are normally 

distributed, at the 95% and 99% confidence levels. Once again, different horizons for 

estimation were used. 

The results show that, for the chosen 95% confidence level, the normal parametric 

approach was adequate (sig.>0.05) to measure risk when 1, 2, and 3-year periods of 

estimation were used. In these cases, losses exceeded predicted VaR between 5-6% of 

occasions. On the other hand, the binomial test rejected the model when 4 and 5-year periods 

of estimation were applied. Losses exceeded predicted normal VaR on only 3% of occasions 

in both cases, suggesting that the model overstated 'true' VaRs. This result is in accordance 
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with the empirical distribution shown before, suggesting that the partial data distributions 

differ from the entire data distribution. 

Table 3: Results of binomial test for the Normal VaR at the 95% and 99% confidence levels and different 
horizons of estimation (1, 2, 3, 4, and 5 years). 

Period of estimation Asymp. Sig. 
Panel A: 95% cl Category N Observed Prop. Test Prop. (I-tailed) 

1 year N-VaR Group 1 :SVaR 2103 0.943 0.95 0.061 a,c 

Group 2 >VaR 128 0.057 
Total 2231 1.000 

2 yearN-VaR Group 1 :SVaR 1868 0.942 0.95 0.057 a,c 

Group 2 >VaR 115 0.058 
Total 1983 1.000 

3 yearN-VaR Group 1 :SVaR 1650 0.952 0.95 0.404 c 

Group 2 >VaR 84 0.048 
Total 1734 1.000 

4 yearN-VaR Group 1 :SVaR 1441 0.968 0.95 0.001 c 

Group 2 >VaR 47 0.032 
Total 1488 1.000 

5 year N-VaR Group 1 :SVaR 1206 0.971 0.95 o.oooc 

Group 2 >VaR 36 0.029 
Total 1242 1.000 

Panel B: 99% cl 

1 year N-VaR Group 1 :SVaR 2186 0.980 0.99 0.000 b,c 

Group 2 >VaR 45 0.020 
Total 2231 1.000 

2 yearN-VaR Group 1 :SVaR 1938 0.977 0.99 0.000 b,c 

Group 2 >VaR 45 0.023 
Total 1983 1.000 

3 yearN-VaR Group 1 :S VaR 1703 0.982 0.99 0.001 b,c 

Group 2 >VaR 31 0.018 
Total 1734 1.000 

4 yearN-VaR Group 1 :SVaR 1478 0.993 0.99 0.127c 

Group 2 >VaR 10 0.007 
Total 1488 1.000 

5 year N-VaR Group 1 :SVaR 1233 0.993 0.99 0.202 c 

Group 2 >VaR 9 0.007 
Total 1242 1.000 

a Alternative hypothesis states that the proportion of cases in the first group< .95. 
b Alternative hypothesis states that the proportion of cases in the first group< .99. 
c Based on Z Approximation. 

Interestingly, the results observed for normal parametric VaR, at the chosen higher 

confidence level of 99% (panel B), were reversed. The model was rejected when short 
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periods of estimation were used (1, 2, and 3 years) and was accepted when long periods of 

estimation were adopted (4 and 5 years). Short period of estimation provided low VaRs, 

resulting in the number oflosses exceeding this parameter being greater than predicted. 

To understand the reverse on the results for normal parametric VaR when the chosen 

confidence level increased, take a look on the graphs of the time series of both daily log 

returns and VaRs. Following are the graphs representing the series observed for 1 and 5 year 

period of estimation (figures 6 and 7, respectively). 
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Figure 6: Time series of both daily log returns and N-VaRs for 1-year period of estimation. 

Figure 7: Time series of both daily log returns and N-VaRs for 5-year period of estimation. 
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As can be observed, the VaR estimate using 5 years for estimation is smoother than 

when using 1 year for estimation. The 5-year estimates are almost a straight line, not 

responding to changes in standard deviation. Its estimates have the high standard deviation 

data in its VaR for a long period. This might explain the overestimation of VaR, at the 95% 

confidence level, which happened when large periods of estimation were used. Contrary, the 

1-year estimate is more responsive to changes in standard deviation. This fact can clearly be 

seen between observations 700 and 1,000 (figure 6), when the VaR estimate increased 

considerably, incorporating the high standard deviation data, and afterwards decreased when 

this data gets aged. 

However, how to explain the results when the 99% confidence level was chosen? The 

answer is the period in which the model was tested. High volatile periods make more difficult 

to forecast risk measures at higher cl. This fact was confirmed when different horizons of 

estimation were tested (at high cl) but now only in the second half of the sample period 

(observation 1115 to 2231 ). At this time, all estimations passed the binomial test. The same 

did not happen at the 95% cl, when the results remained the same as found before. 

Therefore, the results for the normal VaR show that at higher confidence level the model 

is highly dependent to the period of test, being more accurate in low volatile periods no 

matter the length of time used for estimation. At the 95% cl, however, the length of time used 

for estimation matters more than the period of test. Short periods of estimation give more 

accurate VaR estimates in this case. 

4.3 Student t VaR (T-VaR) 

The results of the binomial test for the T-VaR estimates, at the 95 and 99% cl, are 

presented in table 4. 

Clearly, using at-distribution overestimated the VaR measures. For all rejected cases, 

the number of losses exceeding T-VaRs was lower than predicted. Nevertheless, for 1, 2, and 
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3-year periods of estimation (at the 99% cl), the model corrected the underestimation 

provided by the normal VaR and the T-VaR demonstrated to be an adequate measure of risk 

in these cases. Overall, the results for the T-VaR are not in accordance with Wilson (1993) 

who proposed that financial assets log returns should be modeled with student t­

distributions. 

Table 4: Results of binomial test for the T-VaR at the 95% and 99% confidence levels and different horizons of 
estimation (1, 2, 3, 4, and 5 years). 

Period of estimation Asymp. Sig. 
Panel A: 95% cl Category N Observed ProE. Test Prop. (I-tailed) 
1 year T-VaR Group 1 SVaR 2166 0.971 0.95 0.000 a 

Group 2 >VaR 65 0.029 
Total 2231 1.000 

2 year T-VaR Group 1 SVaR 1920 0.968 0.95 0.000 a 
Group 2 >VaR 63 0.032 
Total 1983 1.000 

3 year T-VaR Group 1 SVaR 1693 0.976 0.95 0.000" 
Group 2 >VaR 41 0.024 
Total 1734 1.000 

4 yearT-VaR Group 1 SVaR 1473 0.990 0.95 0.000 a 

Group 2 >VaR 15 0.010 
Total 1488 1.000 

5 year T-VaR Group 1 SVaR 1229 0.990 0.95 0.000 a 
Group 2 >VaR 13 0.010 
Total 1242 1.000 

Panel B: 99% cl 
1 year T-VaR Group 1 SVaR 2210 0.991 0.99 0.432 c 

Group 2 >VaR 21 0.009 
Total 2231 

2 yearT-VaR Group 1 SVaR 1958 0.987 0.99 0.146b,c 

Group 2 >VaR 25 0.013 
Total 1983 

3 year T-VaR Group 1 SVaR 1721 0.993 0.99 0.177 c 

Group 2 >VaR 13 0.007 
Total 1734 

4 year T-VaR Group 1 SVaR 1484 0.997 0.99 0.003 c 

Group 2 >VaR 4 0.003 
Total 1488 1 

5 year T-VaR Group 1 SVaR 1239 0.998 0.99 0.005 c 
Group 2 >VaR 3 0.002 
Total 1242 

a Alternative hypothesis states that the proportion of cases in the first group< .95. 
b Alternative hypothesis states that the proportion of cases in the first group< .99. 
c Based on Z Approximation. 
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4.4 Historical Simulation VaR (HS-VaR) 

The first non-parametric model tested to estimate risk was the historical simulation 

approach. Table 5 shows the results of the binomial test for the HS-VaR. 

Table 5: Results of binomial test for the HS-VaR at the 95% and 99% confidence levels and different horizons 
of estimation (1, 2, 3, 4, and 5 years). 

Period of estimation Asymp. Sig. 
Panel A: 95% cl Category N Observed Prop. Test Prop. (1-tailed) 

1 year HS-VaR Group 1 <::VaR 2114 0.948 0.95 0.315a.c 

Group 2 >VaR 117 0.052 
Total 2231 1.000 

2 year HS-VaR Group 1 <::VaR 1884 0.950 0.95 0.514c 

Group 2 >VaR 99 0.050 
Total 1983 1.000 

3 year HS-VaR Group 1 <::VaR 1658 0.956 0.95 0.131 c 

Group 2 >VaR 76 0.044 
Total 1734 1.000 

4 year HS-VaR Group 1 <::VaR 1436 0.965 0.95 0.005 c 

Group 2 >VaR 52 0.035 
Total 1488 1.000 

5 year HS-V aR Group 1 <::VaR 1212 0.976 0.95 0.000 c 

Group 2 >VaR 30 0.024 
Total 1242 1.000 

Panel B: 99% cl 

1 year HS-V aR Group 1 <::VaR 2201 0.987 0.99 0.063 h.c 

Group 2 >VaR 30 0.013 
Total 2231 1.000 

2 year HS-VaR Group 1 <::VaR 1958 0.987 0.99 0.146 b,c 

Group 2 >VaR 25 0.013 
Total 1983 1.000 

3 year HS-VaR Group 1 <::VaR 1718 0.991 0.99 0.420 c 

Group 2 >VaR 16 0.009 
Total 1734 1.000 

4 year HS-V aR Group 1 <::VaR 1479 0.994 0.99 0.080c 

Group 2 >VaR 9 0.006 
Total 1488 1.000 

5 year HS-VaR Group 1 ::;:VaR 1239 0.998 0.99 0.005 c 

Group 2 >VaR 3 0.002 
Total 1242 1.000 

a Alternative hypothesis states that the proportion of cases in the first group< .95. 
b Alternative hypothesis states that the proportion of cases in the first group< .99. 
c Based on Z Approximation. 
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At the 95% cl, the results are similar to found for the normal VaR. Using horizon period 

of 1, 2, and 3 years for estimation the model presented to be adequate to predict risk of the 

daily Brazilian stock index returns. For 4 and 5-year periods of estimation the model was 

rejected. At the 99% cl, the results are the same except that at this time the 4-year period of 

estimation was also approved. 

Now, check the graphs of the time series of both daily returns and HS-VaRs for 1 and 5-

year periods of estimation to find the reasons behind these results. 
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Figure 8: Time series of both daily returns and HS-VaRs for 1-year period of estimation. 
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Figure 9: Time series of both daily returns and HS-VaRs for 5-year period of estimation. 
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The behavior of the HS-VaR estimates is similar to found for the N-VaR estimates. The 

difference is that now the VaRs are taken in discrete form and so there are some jumps in the 

values. As for the N-VaR, as we move from 1 to 5 years period of estimation the HS-VaR 

estimate becomes less responsive to market volatility changes. For 5-year period of 

estimation, the risk lines show flatness, or excessive smoothness. This means that the risk 

measures are not being updated sufficiently quickly. At the 95% cl, the VaR estimates are too 

high for the risks one would be actually facing. The rate of losses exceeding VaR was only 

3%. Again, at the 99% cl, the VaR estimates are too high and the rate of losses exceeding 

VaR was very close to 0%. 

These last results are direct consequences of ghost effects. Unlikely to recur losses are 

incorporated in the sample and dominate the HS risk estimates until the data gets aged. This 

is an important drawback of the simple historical simulation approach. Past returns entering 

into the V aR estimative are equally important and long ago returns have the same weight as 

recent observations. Further, high confidence levels means small tails, more distant cut-off 

points defining V aR, which are more affected by extreme losses. 

4.5 Volatility-Weighted Historical Simulation VaR (VWHS-VaR) 

Another problem with the simple historical simulation approach is that it assumes that 

volatility is constant over time. This is obviously not the case when dealing with daily stock 

returns. Figure 10 shows the changes in volatility (standard deviation) over time for the time 

period used in this study. 

Clearly, volatility varies over time. The first half of the period is characterized by 

higher volatilities than the second half. The first half volatility statistics is: minimum 

volatility of 0.95%, maximum volatility of 6.34%, mean of 2.79%, and standard deviation of 

1.40%. For the second half we have: minimum volatility of 1.15%, maximum volatility of 

2.60%, mean of 1.92%, and standard deviation of 0.32%. Comparing these numbers 

undoubtedly confirm the visual evidence shown by the graph above. 
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Figure 10: Changes in volatility (standard deviation) for the Brazilian Stock Market Index over the period 
Jan/1994 to Dec/2004. 
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To circumvent most of the problems of the VaR estimates when normal and t parametric 

approaches and the simple historical simulation approach were adopted, we used a more 

sophisticated tool to measure VaR. This consists in giving weights to the data by volatility, 

which is calculated using a moving average scheme with declining weights. The results of 

the binomial test applied to the VaR estimates given by this model (VWHS-VaR), at the 95% 

and 99% confidence levels, are presented in table 6. 

Undoubtedly, the VWHS-VaR model had much better performance than the previous 

models. For all horizon periods for estimation and confidence levels the binomial test 

approved the VaR predictions made by the model. The rates of losses exceeding VaR 

measures ranged between 4.7-6.0%, at the 95% cl, and between 0.9-1.2%, at the 99% cl. 

Further, when the test was conducted only for the second half of the test period (lower 

volatility period) the results remained unchanged. The length of period for estimation and the 

confidence level chosen don't have large influence on the results attained by this model. This 

fact indicates more confidence on the risk estimates given by this approach. 
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Table 6: Results of binomial test for the VWHS-VaR at the 95% and 99% confidence levels and different 
horizons of estimation (1, 2, 3, 4, and 5 years). 

Period of estimation Asymp. Sig. 
Panel A: 95% cl Category N Observed Prop. Test ProE. (I-tailed) 

1 year VWHS-V aR Group 1 SVaR 2127 0.953 0.95 0.247a,c 

Group 2 >VaR 104 0.047 
Total 2231 1.000 

2 year VWHS-VaR Group 1 SVaR 1875 0.946 0.95 0.195 a,c 

Group 2 >VaR 108 0.054 
Total 1983 1.000 

3 year VWHS-V aR Group 1 sVaR 1646 0.949 0.95 0.465 a,c 

Group 2 >VaR 88 0.051 
Total 1734 1.000 

4 year VWHS-VaR Group 1 sVaR 1410 0.948 0.95 0.356 a,c 

Group 2 >VaR 78 0.052 
Total 1488 1.000 

5 year VWHS-VaR Group 1 sVaR 1168 0.940 0.95 0.069 a,c 

Group 2 >VaR 74 0.060 
Total 1242 1.000 

99% cl 
1 year VWHS-V aR Group 1 sVaR 2210 0.991 0.99 0.432 b,c 

Group 2 >VaR 21 0.009 
Total 2231 1.000 

2 year VWHS-V aR Group 1 SVaR 1960 0.988 0.99 0.273 b,c 

Group 2 >VaR 23 0.012 
Total 1983 1.000 

3 year VWHS-VaR Group 1 SVaR 1716 0.990 0.99 0.485 b,c 

Group 2 >VaR 18 0.010 
Total 1734 1.000 

4 year VWHS-V aR Group 1 SVaR 1474 0.991 0.99 0.461 b,c 

Group 2 >VaR 14 0.009 
Total 1488 1.000 

5 year VWHS-VaR Group 1 sVaR 1228 0.989 0.99 0.379 b,c 

Group 2 >VaR 14 0.011 
Total 1242 1.000 

a Alternative hypothesis states that the proportion of cases in the first group< .95. 
b Alternative hypothesis states that the proportion of cases in the first group< .99. 
c Based on Z Approximation. 

However, observing the time series of both daily returns and VWHS-VaRs for 1 and 5 

year period of estimation (figures 11 and 12, respectively), we can note that the model is not 

completely absent of the ghosts effects. Large losses affects the VaR estimates and they 

remain until the volatility-weighted measure corrects VaR, which depends on the magnitude 

of the loss and the change caused in volatility. The model predicts that subsequent losses can 
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be larger when there is an increase in volatility. This characteristic of the model leads 

sometimes to overstate future losses. This feature is more prominent at the 99% confidence 

level, which it is not surprising because this risk measure relies on the very extreme losses. 
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Figure 11: The time series of both daily returns and VWHS-VaRs for 1-year period of estimation. 

40,00% r·····---·--~---··-·---------·········· .. ··-....................................................... ~~.............. ..... .................................... - ..................... ~----······ ................................................................................ ~ 

35,00'X, 

30.00'Y,, 

25.00(X, 

10.00% 

5.00'X, 

0.00% 

-5.00'X, 

-10.00% 

-15,00'X, 

-20.00% 

Figure 12: The time series of both daily returns and VWHS-VaRs for 5-year period of estimation. 

So far, the results indicate that considering the relative importance of old observations 

and changes in volatility give superior VaR estimates of daily returns of the Brazilian market 

index. In this specific case, the ability to accommodate fat tails and skewness of the return 

distributions was the primary source of success in estimating the risk one would be facing 

and this was better reached by the nonparametric approach of volatility-weighted historical 
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presents the results. 

4.6 Normal CVaR (N-CVaR) 

42 

This section presents the results for the test of accuracy of the CVaR measures, made by 

the parametric approach assuming returns are normally distributed, in forecasting the value 

of losses beyond V aR. The paired samples t test was applied using the values of the losses 

that exceeded the N-VaR measure and the corresponding estimated N-CVaR measure. 

Before start analyzing the results, a note is herewith necessary. Sometimes, especially 

when working with a high confidence level like 99%, the number of cases in which the test is 

applied is very small and so the results attained are not reliable. In this section, we will focus 

only on the results in which the number of cases applied is large enough to provide reliable 

results, for instance N > 30. 

Table 7 shows the results for the paired samples t test applied between the losses that 

exceeded the N-VaR measure and the corresponding N-CVaR estimates. It points out that 

there is no significant difference between the N-CVaR measures and the losses exceeding the 

N-VaR for 4 and 5 years period of estimation at the 95% confidence level. In these cases, 

paired differences ranged from a lower of-0.73% and an upper of 0.12%, with a mean of-

0.30%. The paired correlation result, however, was significant only for 4-year period of 

estimation. The correlation found was 0.459. Since the two variables represent two related 

groups, the correlation should be fairly high which in this case is not necessarily true. 

Importantly, it can be noted that, for the cases in which the means were statistically 

different, the paired samples differences mean was negative in all cases. This indicates that 

the 'true' value of the losses that exceeded the V aR measures were, on average, smaller than 

predicted by the N-CVaR. The model overestimated these measures. 
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Table 7: Paired samples statistics, correlations, differences, and t test for the pairs oflosses exceeding N-VaR measures and estimated N-CVaR measures at 
the 95 and 99% confidence levels and different horizon reriods of estimation (1, 2, 3, 4, and 5 years). 

95% cl Paired Samples Statistics Paired Correlations Paired Differences Paired Test 
Pair Period of est. Mean N Std. Dev. Correlation Sig. Mean Std. Dev. Lower (95% cl) Upper(95% cl) t Sig. (2-tailed) 

Loss> N-VaR 1 year -4.86% 120 2.32% 0.530 0.000 -0.77% 1.98% -1.12% -0.41% -4.238 0.000 
N-CVaR 1 year -4.09% 120 1.02% 

Loss> N-VaR 2 years -5.25% 105 2.26% 0.240 0.013 -1.03% 2.20% -1.45% -0.60% -4.795 0.000 
N-CVaR 2 years -4.22% 105 0.66% 

Loss> N-VaR 3 years -5.24% 80 1.97% 0.178 0.113 -0.78% 1.94% -1.21 % -0.35% -3.598 0.001 
N-CVaR 3 years -4.46% 80 0.42% 

Loss> N-VaR 4 years -5.01% 42 1.40% 0.459 0.002 -0.33% 1.25% -0.72% 0.06% -1.701 0.096 
N-CVaR 4 years -4.68% 42 0.48% 

Loss> N-VaR 5 years -4.92% 31 1.15% 0.167 0.370 -0.30% 1.16% -0.73% 0.12% -1.463 0.154 
N-CVaR 5 l'.ears -4.62% 31 0.42% 

99% cl 
Loss> N-VaR 1 year -6.68% 45 2.75% 0.590 0.000 -1.39% 2.23% -2.05% -0.72% -4.171 0.000 
N-CVaR 1 year -5.29% 45 1.42% 

Loss> N-VaR 2 years -7.07% 43 2.52% 0.294 0.055 -1.68% 2.42% -2.43% -0.94% -4.565 0.000 
N-CVaR 2 years -5.39% 43 0.88% 

Loss> N-VaR 3 years -7.04% 28 2.39% 0.400 0.035 -1.44% 2.24% -2.30% -0.57% -3.398 0.002 
N-CVaR 3 years -5.61% 28 0.50% 

Loss> N-VaR 4 years -7.03% 9 1.68% 0.812 0.008 -1.05% 1.18% -1.95% -0.14% -2.654 0.029 
N-CVaR 4 years -5.99% 9 0.71% 

Loss> N-VaR 5 years -6.53% 7 1.41% 0.584 0.168 -0.79% 1.16% -1.86% 0.28% -1.796 0.123 
N-CVaR 5 years -5.75% 7 0.67% 

~ w 
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Comparing the N-CVaR and the N-VaR results, we note that the VaR is better estimated 

when short periods of estimation were used while for the CVaR estimates better results were 

attained when long periods of estimation were used. However, the CVaR estimate is directly 

associated with the VaR estimate, which turns the results for the CvaR ambiguous. Although, 

the result of the paired samples test for N-CVaR (4 years of estimation) was significant, the 

N-CVaR measures used were obtained from N-VaR measures that were established, through 

the binomial test, not being good measures of risk. So, this fact can disqualify the result of 

the N-CVaR in this case. 

4. 7 Student-t CVaR (T-CVaR) 

The results for the paired samples t test applied between the losses that exceeded the T­

VaR measure and the corresponding T-CVaR estimates are presented in table 8. Considering 

the minimum of 30 observations, the only chosen period of estimation and confidence level 

that there was no significant difference between the T -CV aR measures and the losses 

exceeding the T-VaR was 3-year period of estimation at the 99% confidence level. The 

paired differences ranged from -0.46% to 1.25%, with a mean of 0.40%. The paired 

correlation, in this case, was also significant. The correlation found was 0.360, which can be 

considered low under the circumstances. 

Additionally, for most cases in which the paired differences were significant, the mean 

of the differences were negative and greater than found for normal CV aR. This means that 

the t-distribution assumption caused even greater overestimation of the values of the losses 

beyond its VaR. 

When comparing the T-CV aR and the T-VaR results, at this time, there is no ambiguity 

between the results. The T-VaR, using 3 years period of estimation at 99% confidence level, 

was also accepted by the binomial test. So the direct relation between the CV aR and V aR 

measure does not compromise the results in this case. 
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Table 8: Paired samples statistics, correlations, differences, and t test for the pairs of losses exceeding T-VaR measures and estimated T-CVaR measures at 
the 95 and 99% confidence levels and different horizon periods of estimation (1, 2, 3, 4, and 5 years). 

95% cl Paired Samples Statistics Paired Correlations Paired Differences Paired Test 
Pair Period of est. Mean N Std. Dev. Correlation Sig. Mean Std. Dev. Lower (95% cl) Upper(95% cl) t Sig. (2-tailed) 

Loss> T-VaR 1 year -6.33% 48 3.20% 0.624 0.000 -0.96% 2.50% -1.68% -0.23% -2.649 0.011 
T-CVaR 1 year -5.37% 48 1.88% 

Loss >T-VaR 2 years -6.68% 53 2.89% 0.395 0.003 -1.29% 2.65% -2.03% -0.56% -3.552 0.001 
T-CVaR 2 years -5.39% 53 1.24% 

Loss> T-VaR 3 years -5.30% 96 2.00% 0.175 0.088 0.58% 2.08% 0.16% 1.00% 2.737 0.007 
T-CVaR 3 years -5.88% 96 1.00% 

Loss> T-VaR 4 years -6.02% 18 2.22% 0.747 0.000 -0.40% 1.53% -1.16% 0.37% -1.096 0.288 
T-CVaR 4 years -5.63% 18 1.25% 

Loss >T-VaR 5 years -5.25% 25 1.36% 0.666 0.000 0.03% 1.01% -0.39% 0.45% 0.144 0.887 
T-CVaR 5 ~ears -5.28% 25 0.90% 
99% cl 
Loss> T-VaR 1 year -8.30% 17 3.83% 0.635 0.006 -1.54% 3.00% -3.08% 0.00% -2.114 0.051 
T-CVaR 1 year -6.77% 17 1.96% 

Loss >T-VaR 2 years -8.52% 24 3.20% 0.405 0.050 -1.52% 2.95% -2.76% -0.27% -2.524 0.019 
T-CVaR 2 years -7.00% 24 1.62% 

Loss> T-VaR 3 years -7.19% 32 2.51% 0.360 0.043 0.40% 2.37% -0.46% 1.25% 0.945 0.352 
T-CVaR 3 years -7.59% 32 1.30% 

Loss> T-VaR 4 years -8.84% 4 2.19% 0.650 0.350 -0.88% 1.74% -3.64% 1.88% -1.012 0.386 
T-CVaR 4 years -7.96% 4 1.91% 

Loss >T-VaR 5 years -6.13% 7 1.68% 0.936 0.002 0.37% 0.72% -0.30% 1.04% 1.355 0.224 
T-CVaR 5 years -6.50% 7 1.16% 

+:>. 
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4.8 Historical Simulation CVaR (HS-CVaR) 

Now look on the results for the CVaR measure attained when the historical simulation 

approach was adopted (table 9). Although, for most of the chosen period of estimation and 

confidence level the difference between the expected tail loss and the actual tail loss was not 

considered statistically significant, when considering the minimum of 30 observations to 

validate the results, only the HS-CVaRs at the 95% cl using 1, 2, and 3-year periods of 

estimation are not rejected. Mean paired differences are very close among these cases, 

ranging from -0.26% to -0.28%. Additionally, the standard deviation found for these 

differences are lower than the ones found in previous models. This indicates that besides the 

differences tend to be small they do not vary too much. 

Correlation between HS-CVaR and losses beyond HS-VaR, however, decreases as the 

period of estimation gets larger. For the two cases in which the paired test accused significant 

difference between the HS-CVaR measure and tail losses (4 and 5-year periods of estimation 

at the 95% cl), the paired mean differences indicate that the model underestimated the losses 

beyond its V aR. 

Finally, jointly considering the results of the binomial test for the HS-VaR measure and 

the paired mean test for the HS-CVaR measure, we can consider that the historical simulation 

approach was an adequate model to estimate VaR and CVaR using short horizons (1, 2, and 3 

years) for estimation. This approach provided good estimates of the maximum losses one 

should expect at a certain confidence level and the value of the tail losses as well. 
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Table 9: Paired samples statistics, correlations, differences, and t test for the pairs of losses exceeding HS-VaR measures and estimated HS-CVaR measures 
at the 95 and 99% confidence levels and different horizon Eeriods of estimation ( 1, 2, 3, 4, and 5 years). 

95% cl Paired Samples Statistics Paired Correlations Paired Differences Paired Test 
Pair Period of est. Mean N Std. Dev. Correlation Sig. Mean Std. Dev. Lower (95% cl) Upper(95% cl) t Sig. (2-tailed) 

Loss > HS-VaR 1 year -4.92% 107 2.42% 0.658 0.000 -0.26% 1.82% -0.61 % 0.09% -1.473 0.144 
HS-CVaR 1 year -4.66% 107 1.63% 

Loss > HS-VaR 2 years -5.32% 97 2.33% 0.405 0.000 -0.25% 2.16% -0.69% 0.18% -1.154 0.251 
HS-CVaR 2 years -5.06% 97 1.26% 

Loss > HS-VaR 3 years -4.39% 127 1.93% 0.182 0.041 -0.28% 1.94% -0.62% 0.06% -1.637 0.104 
HS-CVaR 3 years -4.11% 127 0.79% 

Loss > HS-VaR 4 years -5.04% 40 1.42% 0.520 0.001 0.51% 1.26% 0.11% 0.91% 2.552 0.015 
HS-CVaR 4 years -5.55% 40 1.06% 

Loss > HS-VaR 5 years -4.96% 30 1.15% 0.194 0.304 0.79% 1.33% 0.29% 1.28% 3.245 0.003 
HS-CVaR 5 years -5.74% 30 0.92% 
99% cl 
Loss > HS-VaR 1 year -7.42% 20 3.50% 0.732 0.000 -0.42% 2.60% -1.64% 0.80% -0.723 0.479 
HS-CVaR 1 year -7.00% 20 3.60% 

Loss > HS-VaR 2 years -7.98% 20 3.19% 0.611 0.004 -0.59% 2.54% -1.78% 0.60% -1.033 0.314 
HS-CVaR 2 years -7.39% 20 2.29% 

Loss > HS-VaR 3 years -7.03% 27 2.46% 0.442 0.021 -0.71% 2.27% -1.61% 0.19% -1.630 0.115 
HS-CVaR 3 years -6.32% 27 1.64% 

Loss > HS-VaR 4 years -7.69% 4 2.22% 0.980 0.020 0.76% 0.78% -0.49% 2.01% 1.936 0.148 
HS-CVaR 4 years -8.45% 4 2.82% 

Loss > HS-VaR 5 years -6.93% 3 1.98% 0.981 0.781 0.76% 0.70% -0.97% 2.49% 1.893 0.199 
HS-CVaR 5 years -7.69% 3 2.52% 

.j::;.. 
--'1 
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4.9 Volatility-Weighted Historical Simulation CVaR (VWHS-CVaR) 

The results of the paired samples test obtained by the VWHS-CVaR model are very 

distinguished depending on the confidence level chosen. As we can see in table 10, for all 

periods of estimation used at the 95% cl the test points that there is no statistically significant 

differences between the VWHS-CVaR estimates and the losses beyond the VWHS-VaR 

estimates. The non-significant paired differences ranged from a lower of -0.51 % and an 

upper of 0.72%. The mean ranged from -0.20% to 0.26%. All paired correlations for these 

cases were also significant. The lowest correlation value found was 0.263 for 5-year period 

of estimation and the highest was 0.677 for 1-year period of estimation. On the other hand, at 

the 99% confidence level, any period of estimation used didn't give VWHS-CVaR estimates 

that passed the test. The estimates seem to overestimate the tail losses. These last results, 

however, are not relied on accepted number of observations and, therefore, are questionable. 

Considering only the results that come from a reasonable number of observations 

(N>30), it can be noticed that the VWHS model had better performance than previous 

models. The model had significant results in the test on all lengths of time used for 

estimation and the correlations found are all significant and higher in most cases than the 

others. Importantly, the model is not dependent on the choice of period of estimation, which 

would make a risk manager more confident on the estimates if were using the technique to 

evaluate tail losses of the Brazilian market index. 

Ultimately, among the approaches applied in this study the nonparametric approach 

using volatility-weighted historical simulation to estimate, at a chosen confidence level, the 

maximum loss one can expect to lose if a tail event does not occur and what one can expect 

to lose if a tail event does occur, demonstrated to be the best tool to manage the daily risk 

when investing in the Brazilian stock market index. 
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Table 10: Paired samples statistics, correlations, differences, and t test for the pairs of losses exceeding VWHS-VaR measures and estimated VWHS-CVaR 
measures at the 95 and 99% confidence levels and different horizon reriods of estimation (1, 2, 3, 4, and 5 years). 

95% cl Paired Samples Statistics Paired Correlations Paired Differences 
Pair Period of est. Mean N Std. Dev. Correlation Sig. Mean Std. Dev. Lower (95% cl) Upper(95% cl) 

Loss > VWHS-VaR 1 year -4.96% 95 2.56% 0.677 0.000 0.22% 2.00% -0.18% 0.63% 
VWHS-CVaR 1 year -5.19% 95 2.41% 

Loss >VWHS-VaR 2 years -5.07% 88 2.62% 0.670 0.000 0.19% 2.07% -0.25% 0.63% 
VWHS-CVaR 2 years -5.27% 88 2.48% 

Loss >VWHS-VaR 3 years -4.96% 65 2.39% 0.676 0.000 0.25% 1.89% -0.22% 0.72% 
VWHS-CVaR 3 years -5.21% 65 2.30% 

Loss >VWHS-VaR 4 years -4.30% 55 1.56% 0.571 0.000 0.26% 1.49% -0.15% 0.66% 
VWHS-CVaR 4 years -4.56% 55 1.66% 

Loss >VWHS-V aR 5 years -4.07% 63 1.22% 0.263 0.037 -0.20% 1.22% -0.51% 0.11% 
VWHS-CVaR 5 years -3.87% 63 0.64% 
99%cl 
Loss >VWHS-VaR 1 year -7.99% 12 3.95% 0.927 0.000 -2.02% 1.54% -2.99% -1.04% 
VWHS-CVaR 1 year -5.98% 12 3.26% 

Loss >VWHS-VaR 2 years -7.99% 12 3.95% 0.927 0.000 -2.02% 1.54% -2.99% -1.04% 
VWHS-CVaR 2 years -5.98% 12 3.26% 

Loss >VWHS-VaR 3 years -7.67% 9 3.55% 0.932 0.000 -1.80% 1.37% -2.85% -0.74% 
VWHS-CVaR 3 years -5.87% 9 2.83% 

Loss >VWHS-VaR 4 years -6.18% 7 1.50% 0.449 0.312 -1.53% 1.40% -2.83% -0.23% 
VWHS-CVaR 4 years -4.65% 7 1.09% 

Loss >VWHS-VaR 5 years -5.84% 9 1.48% 0.324 0.395 -1.58% 1.45% -2.70% -0.47% 
VWHS-CVaR 5 years -4.25% 9 0.83% 

Paired Test 
t 

1.095 

0.863 

1.064 

1.279 

-1.298 

-4.551 

-4.551 

-3.936 

-2.885 

-3.283 

Sig. (2-tailed) 
0.276 

0.391 

0.291 

0.206 

0.199 

0.001 

0.001 

0.004 

0.028 

0.011 

.j:::.. 
\D 
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5. Conclusions 

This study aimed to verify empirically the applicability of parametric and non­

parametric approaches to measure risk (VaR and CVaR) of the Brazilian market index 

(Ibovespa) traded on the Sao Paulo Stock Exchange. The period used for analysis goes from 

the first day of trade of 1995 to the last day of trade of 2004. Therefore, the total length of 

time for estimation of risk parameters and test of each model corresponded to 10 years. 

Parametric approaches assumed that daily returns follow a normal and at-distribution. Non­

parametric approaches are the historical simulation and the volatility-weighted historical 

simulation technique. 

The results pointed out that considering the relative importance of old observations and 

changes in volatility give superior VaR estimates for the Brazilian market index. The 

volatility-weighted historical simulation approach had the best performance among the 

models in estimating the maximum loss one can expect to lose if a tail event does not occur 

in this market. For all horizons of estimation and confidence levels, the binomial test 

accepted the VaR predictions made by the model. The rates of losses exceeding the VaR 

measures ranged between 4.7-6.0%, at the 95% cl, and between 0.9-1.2%, at the 99% cl. 

For large periods of estimation, the risk lines for the normal and historical simulation 

VaR estimates presented flatness, or excessive smoothness, demonstrating inefficiency in 

updating risk. The VaR estimates were too low at the 95% cl, and too high at the 99% cl. For 

these models, short periods of estimation give more accurate VaR estimates. Also, the use of 

at-distribution overestimated the VaR measures. For all rejected cases, the number of losses 

exceeding T-VaR measures was lower than predicted. Nevertheless, for 1, 2, and 3-year 

periods of estimation (at the 99% cl), the model corrected the underestimation provided by 

the normal VaR. 

In the task of measuring what one can expect to lose if a tail event does occur (CVaR), 

the volatility-weighted historical simulation approach also attained the best performance. For 
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all periods of estimation used (1, 2, 3, 4, and 5 years), at the 95% cl, the samples differences 

paired test pointed no statistically significant differences between the VWHS-CVaR 

estimates and the losses beyond the VWHS-VaR estimates. All paired correlations for these 

cases were also significant and, in most cases, higher than found for the other models. 

Inversely to the results found for the N-VaR, the parametric approach assuming normal 

returns provided good CVaR estimates, at the 95% confidence level, when 4 and 5-year 

periods of estimation were used. However, when the means were statistically different, the 

paired differences mean was negative in all cases, indicating that the model overestimated the 

value of the tail losses. For the T-CVaR measures the only chosen period of estimation and 

confidence level that passed the paired sample differences test was the 3- year period, at the 

99% confidence level. For most of the other cases, the !-distribution assumption caused 

greater overestimation than the N-CVaR of the losses beyond its VaR. Finally, the HS-CVaR 

had similar performance of HS-VaR providing, at the 95% cl, good estimates of tail losses 

when short periods of estimation were used. 

As a suggestion for future studies, it would be interesting to test empirically if additional 

refinements on the volatility forecast, for instance the use of a GARCH model, promote 

improvements in the risk measures provided by historical simulation approaches that use 

expected volatility to update return information. Additionally, as suggested by Hull and 

White (1998b ), transformations on the return distributions that approximate them to the 

assumptions assumed in the parametric approaches could be used as an alternative to 

improve the empirical results found for these models. 
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Appendix A: Derivation of the EWMA model 

Using the most recent m observations of daily returns, an unbiased estimate of the 

variance rate per day, CJ1
2 , is: 

2 i In -2 
CJ = -- (r . - r) I t-1 

n-l i=I 

(29) 

Where r is the mean of daily returns. 

When dealing with daily returns the mean will be very low, and we can approximate it 

as been zero. Also, if n is a large number, we can replace the n-1 term by n. In fact, according 

to Figlewsky (1994), these simplifications often make very little difference to the variance 

estimates, and usually reduce their standard errors. We then have the following equation for 

the volatility estimate: 

2 1 ~ 2 
CJ'r = - Lrt-i 

n i=I 

(30) 

It is easy to note that the equation above gives equal weight to all r/ 's. However, given 

that the objective is to monitor the current level of volatility, it is more plausible to give 

greater weight to more recent observations and less weight to more distant ones. For that we 

can use a moving average scheme with declining weights. This approach fits better the fact 

that volatility tends to change over time. So, the estimate becomes: 

(31) 

where the variable a; is the amount of weight given to the observation i days ago. It 

declines as i gets larger, a; < a J when i > j, and sum to 1. 
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One way to deal with the fact that volatilities vary over time is to use the exponentially 

weighted moving average (EWMA) model. In this approach the weights, a;, decrease 

exponentially as we move back trough time. Specifically, a;+i = Aa;, where A is a constant 

between zero and one. The formula for updating volatility becomes: 

11 

2 (1 1)'°""' 1i-I 2 1n 2 
(JI = - /l, L., /l, r,_; + /l, (J 0 (32) 

i=I 

For a large n, the term A11 CJ~ is sufficiently small to be ignored. Lagging the equation above 

by one period, and multiplying throughout by A, we get: 

and 

n 

ACJ12-1 ~ A(l - A) L A;-1 r,~i-1 
i=I 

n 
2 '""'i2 ACJ1-1 = (1- A) L.. A r,_;-1 

i=I 

Subtracting equation (34) from equation (32) and rearranging gives: 

Finally, the estimates of the volatility using the EWMA model becomes: 

(33) 

(34) 

(35) 

(36) 

Where the estimate, CJ1 , of the volatility for day t (made at the end of day t-1) is obtained 

from 0'1_1 (the estimate from one day ago of the volatility for day t-1) and rH (the most 

recent observation on changes in the daily return). 
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Appendix B: Bovespa index profile 

The Bovespa Index is a total return index weighted by traded volume and is comprised 

of the most liquid stocks traded on the Sao Paulo Stock Exchange. Stocks composing the 

index are shown in the table below. 

Table 11: Stocks composing the Bovespa Index in September of2005. 

COMPANY SIMBOL COMPANY SIMBOL 
ACES IT A-PREF ACES4 EMBRATEL-PREF EBTP4 
AM BEV-PREF AMBV4 GERDAU MET-PREF GOAU4 
ARACRUZ CELU-PRB ARCZ6 GERDAU-PREF GGBR4 
BANCO ITAU-PREF ITAU4 IPIRANGA PETR-PR PTIP4 
BELGO MINEIR BELG3 ITAUSA-PREF ITSA4 
BRADESCO SA-PREF BBDC4 KLABIN SA-PREF KLBN4 
BRADESPAR SA-PR BRAP4 LIGHT LIGH3 
BRASIL BBAS3 NET SERVICOS-PRF NETC4 
BRASIL TELEP-PR BRTP4 PET ROB RAS PETR3 
BRASIL TELE PART BRTP3 PETROBRAS-PREF PETR4 
BRASIL TELECOM BRT04 SABE SP SBSP3 
BRASKEM SA BRKM5 SADIA-PREF SDIA4 
CAEMI - PREF CMET4 SID NACIONAL CSNA3 
CELESC-PREF B CLSC6 SOUZA CRUZ CRUZ3 
CELULAR CRT-PF A CRTP5 TEL CTR OES-PREF TCOC4 
CEMIG CMIG3 TELE LESTE CL-PR TLCP4 
CEMIG SA-PREF CMIG4 TELE NORTE L-PRF TNLP4 
CESP-PREF CESP4 TELE NORTE LESTE TNLP3 
CIA DE TRANS-PF TRPL4 TELEMAR N L-PR A TMAR5 
COMGAS-PREF A CGAS5 TELEMIG CELULA-P TMCP4 
CONTAX PART CTAX3 TELESP CELUL P-P TSPP4 
CONTAX PART-PR CTAX4 TELESP-PREF TLPP4 
COPEL-PREF B CPLE6 TIM PART TCSL4 
ELETROBRAS ELET3 TIM PART TCSL3 
ELETROBRAS-PR B ELET6 UNIBANCO-UNITS UBBR11 
ELETROPAULO-PREF ELPL4 USIMINAS SA-PF A USIM5 
EMBRAER EMBR3 VALER DOCE VALE3 
EMBRAER-PREF EMBR4 VALER DOCE-PF A VALE5 
EMBRATEL-PREF EBTP4 VOTORANTIM-PREF VCPA4 
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